21 research outputs found

    A Non-Cooperative Game Theoretical Approach For Power Control In Virtual MIMO Wireless Sensor Network

    Full text link
    Power management is one of the vital issue in wireless sensor networks, where the lifetime of the network relies on battery powered nodes. Transmitting at high power reduces the lifetime of both the nodes and the network. One efficient way of power management is to control the power at which the nodes transmit. In this paper, a virtual multiple input multiple output wireless sensor network (VMIMO-WSN)communication architecture is considered and the power control of sensor nodes based on the approach of game theory is formulated. The use of game theory has proliferated, with a broad range of applications in wireless sensor networking. Approaches from game theory can be used to optimize node level as well as network wide performance. The game here is categorized as an incomplete information game, in which the nodes do not have complete information about the strategies taken by other nodes. For virtual multiple input multiple output wireless sensor network architecture considered, the Nash equilibrium is used to decide the optimal power level at which a node needs to transmit, to maximize its utility. Outcome shows that the game theoretic approach considered for VMIMO-WSN architecture achieves the best utility, by consuming less power.Comment: 12 pages, 8 figure

    PARALLEL OVERLOADED CDMA CROSSBAR FOR NETWORK ON CHIP

    Get PDF
    For high performance of Network on Chip (NoC), Code Division Multiple Access (CDMA) technique is used recently due to its fixed communication delay, reduced area utilisation and low power consumption. The CDMA system uses Walsh based spreading code which improves the bandwidth efficiency. On the contrary, it is not effective when the number of nodes present in the system increases. Overloaded CDMA (OCDMA) is presented for such large network systems. In this paper, OCDMA crossbar is modified and advanced with parallel encoding and decoding operation using orthogonal gold codes for improving the speed of crossbar thereby obtaining high performance in NoC switch. A modified crossbar consisting of extra processing elements is used to enhance the performance of NoC based System on Chip (SoC) system. This work is simulated on Xilinx tool and implemented in Vertex-6 (XC6VLX760) Field Programmable Gate Array (FPGA) device. The proposed work is implemented for four ports, eight ports and sixteen ports with deterministic X-Y routing algorithm in 3 3 NoC design with mesh topology. This NoC switch shows 9.79% improvement in delay and shows 20.76% improvement in power consumption when compared to the existing CDMA NoCs for 8 bit data packet

    Game Theory based Energy Efficient Hybrid MAC Protocol for Lifetime Enhancement of Wireless Sensor Network

    No full text
    Wireless Sensor Networks (WSNs) comprising of tiny, power-constrained nodes are getting very popular due to their potential uses in wide applications like monitoring of environmental conditions, various military and civilian applications. The critical issue in the node is energy consumption since it is operated using battery, therefore its lifetime should be maximized for effective utilization in various applications. In this paper, a game theory based hybrid MAC protocol (GH-MAC) is proposed to reduce the energy consumption of the nodes. GH-MAC is combined with the game based energy efficient TDMA (G-ETDMA) for intra-cluster communication between the cluster members to head nodes and game theory based nanoMAC (G-nanoMAC) protocol used for inter-cluster communication between head nodes. Performance of GH-MAC protocol is evaluated in terms of energy consumption, delay and compared with conventional MAC schemes. The results obtained using GH-MAC protocol shows that the energy consumtion is enormously reduced and thereby the lifetime of the sensor network is enhanced
    corecore